Suppressed sympathetic outflow to skeletal muscle, muscle thermogenesis, and activity energy expenditure with calorie restriction

نویسندگان

  • Tariq I Almundarij
  • Chaitanya K. Gavini
  • Colleen M Novak
چکیده

During weight loss, adaptive thermogenesis occurs where energy expenditure (EE) is suppressed beyond that predicted for the smaller body size. Here, we investigated the contributions of resting and nonresting EE to the reduced total EE seen after 3 weeks of 50% calorie restriction (CR) in rats, focusing on activity-associated EE, muscle thermogenesis, and sympathetic outflow. Prolonged food restriction resulted in a 42% reduction in daily EE, through a 40% decrease in resting EE, and a 48% decline in nonresting EE These decreases in EE were significant even when the reductions in body weight and lean mass were taken into account. Along with a decreased caloric need for low-to-moderate-intensity treadmill activity with 50% CR, baseline and activity-related muscle thermogenesis were also suppressed, though the ability to increase muscle thermogenesis above baseline levels was not compromised. When sympathetic drive was measured by assessing norepinephrine turnover (NETO), 50% CR was found to decrease NETO in three of the four muscle groups examined, whereas elevated NETO was found in white adipose tissue of food-restricted rats. Central activation of melanocortin 4 receptors in the ventromedial hypothalamus stimulated this pathway, enhancing activity EE; this was not compromised by 50% CR These data suggest that suppressed activity EE contributes to adaptive thermogenesis during energy restriction. This may stem from decreased sympathetic drive to skeletal muscle, increasing locomotor efficiency and reducing skeletal muscle thermogenesis. The capacity to increase activity EE in response to central stimuli is retained, however, presenting a potential target for preventing weight regain.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Leanness and heightened nonresting energy expenditure: role of skeletal muscle activity thermogenesis.

A high-calorie diet accompanied by low levels of physical activity (PA) accounts for the widespread prevalence of obesity today, and yet some people remain lean even in this obesogenic environment. Here, we investigate the cause for this exception. A key trait that predicts high PA in both humans and laboratory rodents is intrinsic aerobic capacity. Rats artificially selected as high-capacity r...

متن کامل

Human Skeletal Muscle Mitochondrial Uncoupling Is Associated with Cold Induced Adaptive Thermogenesis

BACKGROUND Mild cold exposure and overfeeding are known to elevate energy expenditure in mammals, including humans. This process is called adaptive thermogenesis. In small animals, adaptive thermogenesis is mainly caused by mitochondrial uncoupling in brown adipose tissue and regulated via the sympathetic nervous system. In humans, skeletal muscle is a candidate tissue, known to account for a l...

متن کامل

Thermic effect of food and sympathetic nervous system activity in humans.

The intake of nutrients is known to increase energy expenditure. Measured thermic effects of nutrient are 0-3% for fat, 5-10% for carbohydrates and 20-30% for proteins. Stimulation of adenosine triphosphate (ATP) hydrolysis during intestinal absorption, initial metabolic steps and nutrient storage are responsible for this food thermic effect. The autonomic nervous system modulates the thermic e...

متن کامل

Isometric thermogenesis at rest and during movement: a neglected variable in energy expenditure and obesity predisposition.

Isometric thermogenesis as applied to human energy expenditure refers to heat production resulting from increased muscle tension. While most physical activities consist of both dynamic and static (isometric) muscle actions, the isometric component is very often essential for the optimal performance of dynamic work given its role in coordinating posture during standing, walking and most physical...

متن کامل

Caloric restriction induces energy-sparing alterations in skeletal muscle contraction, fiber composition and local thyroid hormone metabolism that persist during catch-up fat upon refeeding

Weight regain after caloric restriction results in accelerated fat storage in adipose tissue. This catch-up fat phenomenon is postulated to result partly from suppressed skeletal muscle thermogenesis, but the underlying mechanisms are elusive. We investigated whether the reduced rate of skeletal muscle contraction-relaxation cycle that occurs after caloric restriction persists during weight rec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2017